Integration of arctan(x)/x using parts

Answered using OpenAI o1 preview by OpenAI o1

Question:

Please integrate arctan(x)/x using any special functions required . You may use functions of a complex or imaginary argument,

Answer:

To integrate the function (\frac{\arctan(x)}{x}), we can use integration by parts. Let's set:

[ u = \arctan(x) \quad \text{and} \quad dv = \frac{1}{x} , dx ]

Then, we differentiate and integrate to find (du) and (v):

[ du = \frac{1}{1+x^2} , dx \quad \text{and} \quad v = \ln|x| ]

Now, applying integration by parts:

[ \int \frac{\arctan(x)}{x} , dx = u v - \int v , du ]

Substituting in our expressions for (u), (v), (du):

[ = \arctan(x) \ln|x| - \int \ln|x| \cdot \frac{1}{1+x^2} , dx ]

Now we need to evaluate the integral (\int \ln|x| \cdot \frac{1}{1+x^2} , dx). This integral does not have a simple elementary form, but it can be expressed in terms of special functions.

To evaluate (\int \ln|x| \cdot \frac{1}{1+x^2} , dx), we can use the following result:

[ \int \frac{\ln(x)}{1+x^2} , dx = \frac{1}{2} \ln^2(x) + \frac{1}{2} \arctan(x) \ln(x) + C ]

Thus, we can write:

[ \int \frac{\arctan(x)}{x} , dx = \arctan(x) \ln|x| - \left( \frac{1}{2} \ln^2(x) + \frac{1}{2} \arctan(x) \ln(x) \right) + C ]

Combining the terms, we have:

[ \int \frac{\arctan(x)}{x} , dx = \arctan(x) \ln|x| - \frac{1}{2} \ln^2(x) - \frac{1}{2} \arctan(x) \ln(x) + C ]

This is the integral of (\frac{\arctan(x)}{x}) expressed in terms of logarithmic and arctangent functions.

Thus, the final result is:

[ \int \frac{\arctan(x)}{x} , dx = \arctan(x) \ln|x| - \frac{1}{2} \ln^2(x) - \frac{1}{2} \arctan(x) \ln(x) + C ]